
NASA Contractor Report 201624

ICASE Report No. 96-67

ICA

VISUALIZING VECTOR FIELDS USING LINE INTEGRAL

CONVOLUTION AND DYE ADVECTION

Han-Wei Shen

Christopher R. Johnson
Kwan-Liu Ma

NASA Contract No. NAS1-19480

December 1996

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

Visualizing Vector Fields Using Line Integral
Convolution and Dye Advection

Han-Wei Shen t

MRJ

NASA Ames Research Center

Christopher R. Johnson

Department of Computer Science, University of Utah

Kwan-Liu Ma t

Institute for Computer Applications in Science and Engineering

Abstract

We present local and global techniques to visualize three-dimensionM vector field data. Us-

ing the Line Integral Convolution (LIC) method to image the global vector field, our new

algorithm allows the user to introduce colored "dye" into the vector field to highlight local

flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images.

In addition, we introduce volume rendering methods that can map the LIC texture on any

contour surface and/or translucent region defined by additional scalar quantities, and can

follow the advection of colored dye throughout the volume.

tThis research was supported in part by the National Aeronautics and Space Administration under NASA
contract NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

1 Introduction

Visualizing vector field data is challenging because it is intrinsically difficult to visually con-

vey large amounts of three-dimensional directional information. In fluid flow experiments,

external materials such as dye, hydrogen bubbles, or heat energy are injected into the flow.

The advection of these external materials can create stream lines, streak lines, or path lines

to highlight the flow patterns. Analogies to these experimental techniques have been adopted

by scientific visualization researchers. Numerical methods and three-dimensional computer

graphics techniques have been used to produce graphical icons such as arrows, motion par-

ticles, stream lines, stream ribbons, and stream tubes that act as three-dimensional depth

cues. While these techniques are effective in revealing the flow field's local features, the

inherent two-dimensional display of the computer screen and its limited spatial resolution

restrict the number of graphical icons that can be displayed at one time. In addition, inter-

active guidance that shows the user where to probe locally to obtain specific information is

usually not available.

Additional techniques for vector field visualization include global imaging techniques.

Crawfis and Max [1] [2] proposed direct volume rendering methods to create images of entire

vector fields. Vector kernels and texture splats are used to construct three-dimensional scalar

signals from the vector data. van Wijk [3] proposed a Spot Noise method using stretched

ellipses to create two-dimensional textures that can be mapped onto parametric surfaces.

Max et al.[4] further utilized the spot noise method to visualize three-dimensional velocity

fields near contour surfaces. Cabral and Leedom [.5] presented a Line Integral Convolution

(LIC) method, which uses a one-dimensional low pass filter to convolve a white noise texture

based on the directional information of the vector field. These methods can successfully

illustrate the global behavior of vector fields; however, little or no user probing capability is

provided, so specific information about the local behavior of the field is limited. Furthermore,

some of these methods are difficult to apply to unstructured meshes.

In this paper, we present methods that integrate local and global visualization techniques

to explore three-dimensional vector field data on regular grids. Using the Line Integral

Convolution method as the underlying algorithm, we enable local probing by allowing the

user to introduce "dyes" of various colors into the 2D/3D LIC flow field. The inserted dye

propagates through the flow field, highlighting local flow features such as wavefronts, while

the standard LIC texture still illustrates the global motion. We use three-dimensionM direct

volume rendering techniques that can map the LIC textures onto any contour surfaces or

translucent region, and also can display the propagation of the dye through the volume.

We begin the paper by giving an overview of the LIC algorithm. Next, we describe the

method of dye insertion. We propose a fast algorithm that can significantly reduce the time

needed to recompute the LIC images upon insertion of new dye material. We then describe

the convolutionkernel andhowto control the advectiondistanceof the dye. Wealsodescribe
direct volume rendering methodsthat are usedto render three-dimensionalLIC data. We
concludethe paperby presentingresultsof applyingthe techniqueson a varietyof large-scale
scientificdata sets.

2 Background

In this section, we give an overview of the LIC algorithm originally proposed by Cabral and

Leedom [5]. Although the method can be applied to both two- and three-dimensional vector

data, in this section we restrict our discussion to the two-dimensional case to illustrate the

basic algorithm. We omit the description of some recent improvements to the LIC algorithm

subsequently proposed by Forssell and Cohen [6] and by Stalling and Hege [7]. However, we

note that these newer methods can be easily adapted to our new algorithm.

The LIC algorithm takes a vector field and a texture as inputs. The input texture is

usually white noise data with the same resolution as the vector field. The output of the

algorithm is a scalar field resulting from a local blurring of the input noise texture. The

LIC algorithm carries out the local blurring by applying a one-dimensional low pass filter

convolution throughout the input texture. The convolution kernel follows the direction of

the streamlines originating from the corresponding grid points of the vector field in both

positive and negative directions. As a result, the intensity values of the output scalar field

are strongly related to the vector field's local flow .direction. This convolution can be ex-

pressed as follow:

Where

Fo ,(x,y)= 2' =0F n(Pi)hi+ 2l/=0Fin(P')h
l l' I

2i=0 hi + _i=o hi
(i)

si+hsihi = (2)
•J S i

• Fo,,t(x,y) is the output pixel value at point (x,y).

• Fin(Pi) is the input pixel value at point Pi.

• 1 and l' are the convolution distances along the positive and negative directions, re-

spectively.

• Pi represents the ith cell the streamline steps in the positive direction, and P[represents

a step in the negative direction.

• Po= (x,y).

• hi and h_ are the weighting variables computed from the exact integral of the convolu-

tion kernel n(w).

• n(w) is the low pass filter used for the LIC.

• Asi is the arc length between the point si and si+l along the streamline.

• $0_---0.

The low pass filter used in [5] is a Hanning ripple function, which has a period of 27r. By

shifting the phase of the filter function while performing the convolution, the algorithm can

generate a sequence of LIC images to create a periodic motion effect.

3 Dye Injection

The intensity value of each LIC output cell can be represented as an average of input texture

values along the streamline. This leads to the result that each output cell has an intensity

correlated with cells along the streamline, but not with other cells. The use of the white

noise input to the LIC algorithm assures that the boundaries of neighboring streamlines are

not obscured. In addition, the LIC algorithm changes the phase of the convolution filter to

"push" the noise texture along streamlines.

Through enhancing the individual streamlines and moving the noise texture, the LIC

algorithm provides an excellent visual representation of the flow motion in the vector field.

However, because of the nature of the LIC method, the correspondence between neighboring

streamlines is difficult to observe. Sometimes, the user needs an observable correspondence in

order to track local flow features, such as wavefronts. To resolve this discrepancy, we propose

to use local flow visualization techniques, namely the introduction of foreign materials into

the flow, and to observe the advection of these materials within the flow field. In the next

section, we present a technique for injecting dye into the LIC field to highlight the flow field's

local features.

3.1 Dye Smearing

The LIC algorithm can be used to create a "smearing" effect by convolving the filter with an

input image. This allows the user to generate motion blur and additional artistic effects, as

demonstrated in [5]. The dye insertion method utilizes LIC's natural "smearing" to simulate

advection of dye within the flow field. We simulate the dye injection by assigning colors to

isolated local regions in the input white noise texture. Cells whose streamlines pass through

such regions receive color contributions from the dye. In addition, the phase shifting of the

LIC algorithm can push the concentration of the dye along the streamlines. This creates the

effect of dye propagation. In the standard LIC algorithm, the convolution for eachcell is
performed in both positive and negativestreamlinedirections to conservesymmetry. If we
directly apply the standardLIC method to the input dyedtexture, the upstreamof the dyed
areawill be coloredbecausethe cells' positive streamlinesin that areawill passthrough the
dyed area.and obtain the color contribution. However,to createa correct motion effect, the
dye should smearonly in the forward direction of the flow field. Thereforethe dye should
color only those cellsin the downstreamdirection that correspondto cellswhosenegative
streamlinespassthrough the dyed areas.To overcomethis difficulty, initially a regular LIC
imageFo_,t(x, y) for each animation step is computed using the white noise input. When the

user injects the dye, we apply the LIC convolution using the dyed texture input to those

cells that will be affected by the dye. The convolution is applied along these cells' backward

streamline directions to ensure that the dye will only smear forwards. The results are then

stored into Do_,t(x, y). The final image of the LIC with dye advection can be obtained by

using the formula:

Finalout(x,y) = Dout(x,y) ® Fout(x,y) (3)

The operator ® overwrites the standard LIC pixel values by the dyed values.

An important issue that must be addressed stems from the fact that every time the user

injects a new dye, only a small portion of the cells are affected by the dye. In the next

section, we propose a fast searching algorithm to rapidly locate those cells affected by the

injection of new dye.

3.2 Fast Searching Algorithm

From our previous description, we know that only cells whose negative streamlines pass

through the dyed region within a distance of the convolution length receive color contribu-

tions from the dye. We define a relation:

Definition 1 For cells a and/3, a-+/3 if and only if there is a backward streamline flowing

through a and stepping into/3

Given a dyed cell a, the set of cells, Ft(a), that are affected by this dye can then be expressed

as:

Axiom 1 ft(a) = {pip.a, d(p, a) < L}

where d(p,a) is the arc length of the streamline from point p to point a, and L is the

convolution length.

Given a cell a, the goal is to quickly locate the set of cells Q(a) without searching through

the entire field. A brute force method is to create a list for each cell. The list contains all the

4

cellsthat step backwardsalongstreamlinesinto that cell. This information canbe gathered
while we first perform the standardLIC, sinceall the necessarystreamlinesare computedat
that time. To decideuponthe set ft(a), wecansimply traversethrough the list and retrieve
the cells.

While the abovemethod is simple, the memory requirement to perform it would be
overwhelming.This isbecauseeachcell's list wouldcontain manycellsalong the streamlines.
To resolvethis, wehavedesigneda new algorithm. First, we definea new relation:

Definition 2 For cells a and/3, a 2+/3 if a-+/3 or 3{p0, pl,"" pn}, such that

a--+po, po--+pl, " " pn-+/3.

From definition 1 and definition 2, we know that:

Axiom 2 if a_/3 then a -_ /3.

Note that the above axiom does not necessarily hold in the reverse direction. Secondly,

define a set w as:

Definition 3 w(c_) = {pip 4 a,d(p,o 0 < L}

From axiom 2, we know that:

Axiom 3 co(a) __Df_(c_).

Our fast searching algorithm can locate the cells in the set co(a) that are a superset of f_(a).

In practice, the difference between the number of cells in the set f_(a) and the set co(a) is

very small. To locate the cells in co, we define a new relation:

Definition 4 A cell a --_ /3 if and only if c_--+/3 and ol is/3 's direct neighbor.

We call this relation a direct flow-back relation. The direct neighbors of a cell are those

cells that are directly adjacent to that cell in the physical space. For example, a cell has

eight direct neighbors in a two-dimensional Cartesian grid, and has 26 direct neighbors in

three-dimensional space.

The direct flow-back neighbors for each cell can be obtained and stored when we first use

the standard LIC algorithm. Given a root cell c_, the cell and its recursive direct flow-back

neighbors actually constitute a directed graph. The nodes in this directed graph are then

the members of the set a_. Therefore, the co(c_) can be found by using:

Algorithm 1 A member of co(a) can be found by using a Breadth First Search method

starting from cell a and traversing through its direct flow-back neighbors recursively.

4 15

__)I__,(
mB_gm__

--"1/ L

A

/
8

Figure 1: Streamlines and dye

Figure 1 shows an example of a flow field. The shaded cell is the original dyed cell.

Figure 2 illustrates the resultant directed graph if we only consider the streamline A, B, and

C.

Our new algorithm is considerably more memory efficient than the brute force method

because only the direct flow-back neighbors need to be stored for each cell. The number of

direct flow-back neighbors will usually be much lower than the actual number of the direct

neighbors for a cell, with the exception of cells near critical points. We have found that

the average number of direct flow-back neighbors for each cell in our experimental three-

dimensional flows is approximately two or three.

3.3 Convolution Kernel

The Hanning windowed filter used in [5] can not be easily adopted by our algorithm to create

natural dye advection effect. This is because that the Hanning ripple function is a periodic

function with multiple peaks, and the Hanning window function attenuates the values of

the incoming function values at two ends. Even though several parameters of these two

functions could be modulated, it is still difficult to construct a good combination of the

parameters such that the concentration of the dye can advect along the streamline smoothly.

In our implementation, we use a simple box filter instead of the Hanning filter so that the

appearance of the dye advection can be controlled more easily. The equation 2 becomes:

s_+Aslhi = ldw = Asi (4)
•Y 8 i

To add the ability to shift the filter box to create flow motion in the animation sequence,

we revise the equation 1 to:

&

Figure 2: Flow-back directed graph

Four(I, x, y) =

Where

1 I'
2_=o F_,_(P_)hiT(I, s_) + F,_=o F_n(P[)h_T(g, s{)

l l'
E_=oh_T(I,s_) + E_=oh_T(I,s_)

1 ifsi6* I AL]T(I, si) = 0 otherwise

• _ is the number of LIC animation steps

• I C [0, • - 1] is the current animation step

• AL is the length of the filter box

(5)

Figure 3 shows the phase shift of the box filter.

In equation 5, T(I, si) is a predicate that determines if the current pixel is within the

range of the filter box [_L, _L + AL]. Note that if _L + AL is greater than L, this value

needs to be wrapped around so that it become (/L + AL) rood L. The new notation E*

that we use above is therefore based on this relationship.

It is known that the box filter could cause artifacts when the boxes reenter the interval.

A solution to avoid this problem can be found in [7].

3.4 Advection Length

In the standard LIC algorithm, there is only a single convolution length defined for all cells

in the field. $ This global convolution length determines the distance that the dye can travel

STo simplify our explanation here, we omit the variation that the convolution length can be scaled based

on the vector magnitudes.

tO

b m g A L---I

tl

t2

t3

Figure 3: Phase shift of the box filter

and this distance is often desired to be long enough so that the local flow features can be

clearly highlighted. However, extending the convolution length globally would decrease the

contrast of the LIC texture and slow down the computation. In our algorithm, we allow the

user to specify convolution lengths separately for the dye advection.

To use a longer convolution length for the dye advection, more LIC animation steps are

needed to complete the animation. Assuming thatthe global convolution length is L, the

number of animation steps for the standard LIC convolution is • and that the convolution

r is the number of animation steps required. Here welength for the dye is F, then 27 = O x

assume that r is always a multiple of L. We revise the LIC formula for the dyed advection:

Do,_t(I,x,y) =

Ef=ro D_n(Pi)h_T'(I, si)

:=rohiT,(i, si) (6)

Where

1 if si E* [_V, _r ÷ ALlT'(I, .si) = 0 otherwise

• Di,_(Pi) is the input dyed texture

• Do,_t(I, x,y) is the output value

for the dyed cell(x, y) at step I.

• I E [0, 27- 1] is the current animation step

• AL is the length of the filter box.

Note that for those cells that are not affected by the dye, only (I) steps of LIC output

are computed. To combine these standard LIC outputs with the results from the LIC dye

advection, we can use the formula:

Finalo_t(I,x,y) = Do_t(I,x,y) ® Fo_t(I rood O,x,y)

where the meaning of the operator ® is explained in section 3.1.

(7)

4 3D LIC Rendering

While the output of the three-dimensional LIC algorithm is a scalar field, standard visu-

alization techniques, such as isosurface extraction or volume rendering, cannot be directly

applied to the output. This is because the values of the LIC volume consists primarily of

noise signals that are used to construct the vector textures and do not themselves have any

physical meaning. In this section, we present direct volume rendering methods that can

render three-dimensional LIC textures on arbitrary surfaces or regions derived by additional

scalar quantities, and also can display the propagation of the dye through the volume. In

the sections that follow, we first introduce a bi-variate volume rendering model and then

describe the methods used to image the dye propagation.

4.1 Bi-Variate Volume Rendering

To render the LIC texture onto local regions, our volume rendering process takes two volume

data sets with separate transfer functions as the input. A scalar variable, such as the

magnitude of velocity, or pressure, or of vorticity, is used as the primary data. The opacity

map of the primary data, which is manipulated in the same way as in the standard volume

rendering method, is used to define the transparency of each voxel in the volume. The LIC

texture, which serves as the secondary data, has its own color map but uses the transparency

defined by the primary data. To render these two input data sets, we define a volume mixture,

which is similar to what is used in [8], to blend these two input data sets. The color of each

voxel V, Cv, comes from the contributions of both data sets and can be expressed as:

Cv=/3 x Cp + (1-/3) x C_, (8)

where C'7.pis the color from the primary data at voxel V and C_ is the color from the secondary

data. The/3 C [0, 1] is a weight between the primary and secondary data specified by the

user. When/3 is 1, the volume mixture is equivalent to the scalar volume; when/3 is 0, the

volume mixture is the same as the LIC volume. A gradual shifting of this parameter from

1 to 0 enables the user to track features from the scalar data. at the beginning and visualize

the counterpart of the vector data and vice versa. Our new rendering model allows the user

to interactively change the weighting parameter and visualize the results.

9

Our bi-variate volume rendering method usesthe standard front-to-back compositing
method, wherethe final color at pixel p can be expressed by the following formula

n

Cp = _--_'W(i)Cv_, (9)
i=1

where Cv_ is the color contribution at the i-th sample point 1/_. W(i) is the light attenuation

factor, which is computed from the formula:

i--1

W(i) = c_(l/i)[1 - _ W(j)]. (10)
j=0

c_(V/) is the opacity at the point 1,4 and is defined by the primary data set's opacity map and

its data value at that point. We can replace the C,_ in equation 9 with the volume mixture

in equation 8 and obtain:
n

Cp : _ W(i)Cv_ :
i=1

n

W(i)[_ x C<(p) + (1 -/3) x Cv{(s)] =
i=1

n n

[W(i)Cv,(p)] + (1 -/3)[X] w(i)Cg,(,)]. (11)
i=1 i=1

Here Cv_(p) is the color contribution at point l/i from the primary data set and Cvds) is

the color contribution from the secondary data set. Equation 11 reveals a very interesting

property: when we render the volume mixture, we can render each volume separately. The

mixture image can be generated by a simple two-dimensional image blending.

Thus the bi-variate volume rendering model can be used to intermix the scalar and vector

information. Moreover, the user can interactively adjust the volume blending parameter/3

to track important features from one variable and visualize the counterparts of the other

variable.

4.2 Dye Rendering

It is helpful to display the LIC texture onto local regions such as isosurfaees and translucent

areas. However, this could give the user the wrong impression that the flow is always along

the surface or local regions. This problem can be remedied if we can visualize the dye

propagation through the volume. In our method, we allow the user to specify opacity of the

injected dye. The opacity values in the LIC dye input are convolved in the same way that we

convolved the pixel values. As a result, the output volumes of.the LIC computation consist

of both color and opacity information.

10

To take the dye opacity into consideration when performing volume rendering, the bi-

variate rendering model needs to be slightly modified. This is because the LIC volume, as

a secondary data, also affects the volume's opacities. When rendering the LIC volume, we

calculate the opacity value at each sample point as the sum of the opacities from the primary

data and from the LIC volume. The color contribution of the LIC voxel at that sample point

is then computed using this opacity. Following is pseudo code for rendering the LIC volume

using ray casting.

for

}

(each ray from the image plane) {

for (each sample step along the ray) {

opacity = primary opacity + dye opacity;

accumulate the LIC color;

accumulate the opacity;

}

A simple but useful extension is that the color of dye can be determined by additional

scalar variables. In this way both the flow direction and scalar distribution can be visualized

at the same time.

5 Results and Discussion

We have implemented our algorithms using C++ and OpenGL. The software combines

modules of Line Integral Convolution with Dye Injection and Bi-variate volume rendering.

In our current software implementation, the user can inject dye by slicing through the three-

dimensional LIC output and speci_'ing the dye locations. Our fast search algorithm can

rapidly recompute the LIC output based on the dye position and then feed the results back

to the volume renderer module. We have found that our fast search algorithm can reduce

the compute time, on average, by over 90% when compared to the standard LIC method

for recomputing the animation sequence of the LIC data. The output of the LIC volume

contains red, green, blue and opacity components for each voxel. For the volume rendering

module, we define a C++ volume renderer class. The renderer instance of this class can be

either a primary data renderer or a secondary data renderer. Through a software pointer

between the primary data renderer and secondary data renderer, the secondary renderer

can access the primary renderer's transfer function, volume data, and other auxiliary data

structures to facilitate the bi-variate rendering model. A secondary renderer class instance

is created for each LIC output in the animation sequence. These renderer objects can be

dispatched to different processors in a multiprocessor environment to perform a coarse grain

parallel volume rendering.

11

Figures 4-6 show several LIC images with dye propagation. Figure 4 shows three different

colored dye propagating through a two dimensional vector field. Figure 5 is an animation

sequence of dye advection in a 32 × 30 × 30 vector field from a three-dimensional combustion

simulation. Figure 6 is an animation sequence of dye advection in a 96 × 96 × 96 tornado

data set. The dye is colored based on the magnitude of the vector field.

6 Conclusion and Future Work

We have presented new algorithms to visualize three-dimensional vector fields using Line

Integral Convolution methods. Our algorithm allows the user to insert dye into the flow field

to enhance local flow features. Given a region with dye, our algorithm can rapidly locate

the cells that are on the path of the dye propagation. Therefore, the LIC computation needs

to be applied only on a small subset of the entire field. We proposed a bi-variate volume

rendering method to display three-dimensional LIC textures on arbitrary contour surfaces

or translucent regions that are derived from additional scalar quantities. The new rendering

methods can also be used to render the dye propagation through the volume.

Future work includes providing more flexible control for modeling the behavior of the dye.

This includes using different filter kernels to control the appearance of the dye. An additional

useful feature would be to provide a natural and effective way for the user to probe the three-

dimensional space and inject the dye. Finally, we plan to utilize the coherence between LIC

volumes in an animation sequence to speed-up the volume rendering and allow for interactive

data exploration.

Acknowledgments

This work was supported in part by awards from the NSF, NIH, and by ICASE under NASA

contract NAS1-19480. We would like to thank C. Hansen, K. Coles, R. McDermott, and the

reviewers for their helpful comments and suggestions. Furthermore, we appreciate access to

facilities that are part of the NSF STC for Computer Graphics and Scientific Visualization.

References

[1] R. Crawfis and N. Max. Direct volume visualization of three-dimensional vector fields. In

Proceedings of 1992 Workshop on Volume Visualization, pages 55-60. IEEE Computer

Society Press, Los Alamitos, CA, 1992.

12

[2] R. Crawfis and N. Max. Texture splats for 3d scalar and vector field visualization.
In Proceedings of Visualization '93, pages 261-265. IEEE Computer Society Press, Los

Alamitos, CA, 1993.

[3] J.J. van Wijk. Spot noise: Texture synthesis for data visualization. Computer Graphics,

25(4):309-318, 1991.

[4] N. Max, R. Crawfis, and C. Grant. Visualizing 3d velocity fields near contour surfaces.

In Proceedings of Visualization '94, pages 248-255. IEEE Computer Society Press, Los

Alamitos, CA, 1994.

[5] B. Cabral and C. Leedom. Imaging vector felds using line integral convolution. In

Proceedings of SIGGRAPH 93, pages 263-270. ACM SIGGRAPH, 1993.

[6] L.K. Forssell and S.D. Cohen. Using line integral convolution for flow visualization:

Curvilinear grids, variable-speed animation, and unsteady flows. IEEE Transaction on

Visualization and Computer Graphics, 1(2):133-141, 1995.

[7] D. Stalling and H.-C. Hege. Fast and resolution independent line integral convolution.

In Proceedings of SIGGRAPH 95, pages 249-256. ACM SIGGRAPH, 1995.

[8] R.A. Derbin, L. Carpenter, and P. Hanrahan. Volume rendering. In Proceedings of

SIGGRAPH 88, pages 65-74. ACM SIGGRAPH, 1988.

13

Figure 4: 2D LIC images with dye

Figure 5: Dye advection in a 3D combustion simulation

.....: ::::: :: :. :: :.::::H:: :

Figure 6: Dye advection in a 3D tornado simulation

14

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Informat on Operat ons and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1996 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

VISUALIZING VECTOR FIELDS USING LINE INTEGRAL

CONVOLUTION AND DYE ADVECTION

6. AUTHOR(S)
Han-Wei Shen

Christopher R. Johnson

Kwan-Liu Ma

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 96-67

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-201624

ICASE Report No. 96-67

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report
To appear in the Proceedings of the 1996 Symposium on Volume Visualization.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words)

We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral

Convolution (LIC) method to image the global vector field, our new algorithm allows the use to introduce colored

"dye" into the vector field to highlight local flow fetures. A fast algorithm is proposed that quickly recomputes
the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any
contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of

colored dye throughout the volume.

i14. SUBJECT TERMS

volume rendering; line integral convolution; flow visualization; animation

I 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION: lg. SECURITY CLASSIFICATIOE

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

_ISN 7540-01-280-5500

15. NUMBER OF PAGES

16

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

